Name \qquad Section \# \qquad Student ID \# \qquad

Chemistry 20B, Winter 2016, Sections 1 \& 3, Midterm \#1
20 January 2016
6 questions +2 small extra credit problems, 10 pages.
Answer on these sheets only. Additional space on last page.
If you need extra sheets, please ask your proctor or TA.
Note: Only these papers can be used; no other notes are allowed.
Please answer each question concisely. Show your calculations.
You may (and in some cases, must) draw explanatory diagrams. Label all axes and features on graphs and diagrams.

You may not use a calculator, computer, watch, smart device, or electronics of any sort. Irrelevant material will be ignored. Incorrect material will result in loss of points.

Table of constants and conversions

Speed of light: $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Electron charge magnitude: $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
Plank's constant: $\hbar=1.1 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
Gas constant: $\mathrm{R}=0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}=8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=1.987 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$
Boltzmann constant: $k_{\mathrm{B}}=1.4 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Electron rest mass: $\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}$
Proton rest mass: $\mathrm{M}=1.7 \times 10^{-27} \mathrm{~kg}$
1 mole $=6.02 \times 10^{23}$

Energy Conversion Table							
	eV	cm^{-1}	kcal/mol	kJ/mol	K	J	Hz
eV	1	8065.73	23.0609	96.4869	11604.9	1.60210×10^{-19}	$2.41804 \times 10^{+14}$
cm^{-1}	1.23981×10^{-4}	1	0.00285911	0.0119627	1.42879	1.98630×10^{-23}	$2.99793 \times 10^{+10}$
$\mathrm{kcal} / \mathrm{mol}$	0.0433634	349.757	1	4.18400	503.228	6.95×10^{-21}	$1.04854 \times 10^{+13}$
kJ/mol	0.01036410	83.593	0.239001	1	120.274	1.66×10^{-21}	$2.50607 \times 10^{+12}$
K	0.0000861705	0.695028	0. 00198717	0.00831435	1	1.38054×10^{-23}	$2.08364 \times 10^{+10}$
J	$6.24181 \times 10^{+18}$	$5.03445 \times 10^{+2}$	$1.44 \times 10^{+20}$	$6.02 \times 10^{+20}$	$7.24354 \times 10^{+22}$	1	$1.50930 \times 10^{+33}$
Hz	4.13558×10^{-15}	3.33565×10^{-11}	9.53702×10^{-14}		4.79930×10^{-11}	6.62561×10^{-34}	

You will find a periodic table for your reference on the next page.

Question 1 (10 points):

In Flint, Michigan, the water supply has become contaminated with lead.
If you were worried that other metals might be in the water, how would you determine which are present?
Describe how that information is obtained from your choice.

Question 2 (15 points):

A 3-m long cylinder has three compartments with two and each compartment has a volume of 45 L. Initially, the separators are held in place and each compartment is open to the air, with the pressure in the room at 760 torr (1.0 atm), and the temperature at $0{ }^{\circ} \mathrm{C}$. Assume that the air is an ideal gas.
a) How many moles of gas are in each compartment? (5 points)
b) The connections from the compartments to the room are sealed off and:
the pressure in the right chamber is increased to 2.0 atm ,
the pressure in the left chamber is increased to 3.0 atm , and
then the separators (pistons) are released and move without friction.
What is the pressure in each chamber?
Where do the separators sit (draw a diagram) and why? (10 points)

Question 3 (30 points):

Heat is added at a constant rate to water as the temperature is raised from $-20^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$.
Draw the time course of the temperature and density (two different curves) and indicate the phase(s) at each temperature.
Label and concisely explain each stage of each curve and indicate where intermolecular bonds are made or broken.

Question 4 (15 points):

How could you differentiate between ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$, nitrogen $\left(\mathrm{N}_{2}\right)$, and carbon monoxide (CO) using mass spectrometry?

Question 5 (15 points):

Why are there warning signs indicating "ionizing radiation"?
Briefly explain in terms of energies and other related issues.
Give two examples of ionizing radiation.

Question 6 (15 points):

How would you experimentally determine the atomic radius of Xe?
Briefly explain your choice of technique in terms of length scales, energies, and related issues.

Extra credit \#1 (2 points):

How are the gas constant, \mathbf{R}, and the Boltzmann constant, $\boldsymbol{k}_{\mathbf{B}}$, conceptually related

Extra credit \#2 (2 points):

How are the energy units $\mathbf{H z}$ and $\mathbf{c m}^{-1}$ conceptually related?

Name \qquad Section \# \qquad Student ID \# \qquad
TOTAL = \qquad
Chemistry 20B, Winter 2016, Sections 1 \& 3, Midterm \#2
1)

18 February 2016
5 questions +2 small extra credit problems, 10 pages.
Answer on these sheets only. Additional space on last page.
If you need extra sheets, please ask your proctor or TA.
2)

Note: Only these papers can be used; no other notes are allowed.
4)

Please answer each question concisely. Show your calculations.
You may (and in some cases, must) draw explanatory diagrams.
Label all axes and features on graphs and diagrams.
5)

EC1+2)
You may not use a calculator, computer, watch, smart device, or electronics of any sort. Irrelevant and/or incorrect material will result in loss of points.

Table of constants and conversions
Speed of light: $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Electron charge magnitude: $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
Plank's constant: $\hbar=1.1 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
Gas constant: $\mathrm{R}=0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}=8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=1.987 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$
Boltzmann constant: $k_{\mathrm{B}}=1.4 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Electron rest mass: $\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}$
Proton rest mass: $\mathrm{M}=1.7 \times 10^{-27} \mathrm{~kg}$
1 mole $=6.02 \times 10^{23}$

Energy Conversion Table							
	eV	cm^{-1}	kcal/mol	kJ/mol	K	J	Hz
eV	1	8065.73	23.0609	96.4869	11604.9	1.60210×10^{-19}	$2.41804 \times 10^{+14}$
cm^{-1}	1.23981×10^{-4}	1	0.00285911	0.0119627	1.42879	1.98630×10^{-23}	$2.99793 \times 10^{+10}$
$\mathrm{kcal} / \mathrm{mol}$	0.0433634	349.757	1	4.18400	503.228	6.95×10^{-21}	$1.04854 \times 10^{+13}$
kJ/mol	0.01036410	83.593	0.239001	1	120.274	1.66×10^{-21}	$2.50607 \times 10^{+12}$
K	0.0000861705	0.695028	0.00198717	0.00831435	1	1.38054×10^{-23}	$2.08364 \times 10^{+10}$
J	$6.24181 \times 10^{+18}$	$5.03445 \times 10^{+22}$	$1.44 \times 10^{+20}$	$6.02 \times 10^{+20}$	$7.24354 \times 10^{+22}$	1	$1.50930 \times 10^{+33}$
Hz	4.13558×10^{-15}	3.33565×10^{-11}	9.53702×10^{-14}		4.79930×10^{-11}	6.62561×10^{-34}	1

$\Delta \mathrm{G}^{\circ}=-n \mathrm{FE}^{\circ}=-2.303 \mathrm{RT} \log _{10} \mathrm{~K}_{\mathrm{eq}}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log _{10}\left([\mathrm{HA}] /\left[\mathrm{A}^{-}\right]\right)$
You will find a periodic table for your reference on the next page.

Question 1 (25 points):

Limestone $\left(\mathrm{CaCO}_{3}\right)$ is heated to produce lime (CaO) as an inexpensive, solid base in the following reaction:
$\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
a) What are the signs of $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$ for this reaction? (20 points)

Explain your answer for each.
If any of the answers depend on additional information, indicate on what and how.
b) What can you say about the equilibrium constant $\mathrm{K}_{\text {eq }}$? (5 points)

Question 2 (15 points):

Referring again to the reaction:
$\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
a) Write the equilibrium constant for this reaction (in terms of concentrations, etc.). (5 points)
b) If a sealed container, initially under vacuum, with both $\mathrm{CaCO}_{3}(s)$ and $\mathrm{CaO}(s)$ inside is allowed to reach equilibrium, how might you measure the equilibrium constant?
(5 points)
c) When the volume of the container is doubled (by opening a valve to an evacuated container), what happens? (5 points)

Question 3 (20 points):

On the first exam, you described what happened when heat is added at a constant rate to water as the temperature is raised from $-20^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$.
a) Draw the time course of the temperature again. Indicate the phase(s) present in each temperature band. Indicate what determines the slope for each section of the plot. (10 points)
b) Describe briefly what we know (i.e., signs and any other information) about $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$ at each phase transition? (10 points)

Question 4 (25 points):

A lithium ion battery, such as found in a cell phone, operates at a high cell potential based on the following half-cell reactions:

$$
\begin{array}{ll}
\mathrm{CoO}_{2}+\mathrm{Li}^{+}+\mathrm{e}^{-} \leftrightarrow \mathrm{LiCoO}_{2} & \mathrm{E}^{\circ} \cong 1 \mathrm{~V} \\
\mathrm{Li}^{+}+\mathrm{C}_{6}(\text { polymer/graphite })+\mathrm{e}^{-} \leftrightarrow \mathrm{LiC}_{6}(\text { polymer/graphite }) & \mathrm{E}^{\circ} \cong-3 \mathrm{~V}
\end{array}
$$

Compare to:
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{E}^{\circ}=1.23 \mathrm{~V}
$$

$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \leftrightarrow \mathrm{H}_{2}(g)$
$\mathrm{E}^{\circ}=0.00 \mathrm{~V}$
$\mathrm{Li}^{+}+\mathrm{e}^{-} \leftrightarrow \mathrm{Li}$
$\mathrm{E}^{\circ} \cong-3 \mathrm{~V}$
a) What is the overall cell reaction for the lithium ion battery shown? (5 points)
b) What is the overall standard cell potential of the reaction you wrote in (a)? (5 points)
c) What is the n (number of electrons) for the overall cell reaction you wrote in (a)? (5 points)
c) Which elements of which compounds are being oxidized and which are being reduced in the overall cell reaction you wrote in (a)? Determine the oxidation states of all the species in the reaction. (5 points)
d) Can the reaction that you wrote in (a) be carried out in water (aqueous solution)? Why or why not? (5 points)

Question 5 (15 points):

a) Why do metals absorb infrared light (i.e., why are they not transparent in the infrared)? (5 points)
b) ZnO is a direct band gap semiconductor with a band gap of 3.3 eV . Why is it colorless? (10 points, and see extra credit problem)

Extra credit \#1 (5 points):

Why is ZnO used in sunscreen?

Extra credit \#2 (5 points):

Estimate $\Delta \mathrm{G}^{\circ}$ for your answer to question 4 b and explain your reasoning.

Name \qquad
\qquad Student ID \# \qquad

Signature \qquad
TOTAL = \qquad
Chemistry 20B, Winter 2016, Sections 1 \& 3, Midterm \#3
1)

29 February 2016
5 questions +2 small extra credit problems, 10 pages.
Answer on these sheets only. Additional space on last page.
If you need extra sheets, please ask your proctor or TA.
Note: Only these papers can be used; no other notes are allowed.
Please answer each question concisely. Show your calculations.
You may (and in some cases, must) draw explanatory diagrams. Label all axes and features on graphs and diagrams.

EC1+2)
You may not use a calculator, computer, watch, smart device, or electronics of any sort. Irrelevant and/or incorrect material will result in loss of points.

Table of constants and conversions

Speed of light: $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Electron charge magnitude: $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
Plank's constant: $\hbar=1.1 \times 10^{-34} \mathrm{~J}$-s
Gas constant: $\mathrm{R}=0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}=8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=1.987 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$
Boltzmann constant: $k_{\mathrm{B}}=1.4 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Electron rest mass: $\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}$
Proton rest mass: $\mathrm{M}=1.7 \times 10^{-27} \mathrm{~kg}$
1 mole $=6.02 \times 10^{23}$
Faraday constant $=96500 \mathrm{coul} / \mathrm{mole}$

Energy Conversion Table							
	eV	cm^{-1}	kcal/mol	kJ/mol	K	J	Hz
eV	1	8065.73	23.0609	96.4869	11604.9	1.60210×10^{-19}	$2.41804 \times 10^{+14}$
cm^{-1}	1.23981×10^{-4}	1	0.00285911	0.0119627	1.42879	1.98630×10^{-23}	$2.99793 \times 10^{+10}$
$\mathrm{kca} / \mathrm{mol}$	0.0433634	349.757	1	4.18400	503.228	6.95×10^{-21}	$1.04854 \times 10^{+13}$
kJ/mol	0.01036410	83.593	0.239001	1	120.274	1.66×10^{-21}	$2.50607 \times 10^{+12}$
K	0.0000861705	0.695028	0.00198717	0.00831435	1	1.38054×10^{-23}	$2.08364 \times 10^{+10}$
J	$6.24181 \times 10^{+18}$	$5.03445 \times 10^{+22}$	$1.44 \times 10^{+20}$	$6.02 \times 10^{+20}$	$7.24354 \times 10^{+22}$	1	$1.50930 \times 10^{+33}$
Hz	4.13558×10^{-15}	3.33565×10^{-11}	9.53702×10^{-14}		4.79930×10^{-11}	6.62561×10^{-34}	1

$\Delta \mathrm{G}^{\circ}=-n \mathrm{FE}^{\circ}=-2.303 \mathrm{RT} \log _{10} \mathrm{~K}_{\mathrm{eq}}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log _{10}\left([\mathrm{HA}] /\left[\mathrm{A}^{-}\right]\right)$
You will find a periodic table for your reference on the next page.

Wก13มกา	พก1ษษヨแメ	WกITก	Wก19४	wniwnor	nisoddS 10	Wn19831	Wninloovo	กэ	wnitur	WIHIE	NnII	nimwoossted	เ丬่	Wniv
n＇t	9X	$\mathbf{U L}^{\mathbf{L}}$	I＇H	OH		qL	pD	且	UIS	पund	PN	$\mathrm{I}_{\mathbf{d}}$	ว）	BT
L6\％ 21 IL	to el $0<$	86891 69	92Lal 89	86＇091 29	os z91 99	ع68sı 99	sz＜Lst t9	$96 \cdot$ เธı $\mathfrak{\varepsilon}$	98． $\mathrm{osı}$ z9	（str） 19	tて＇tol 09	160t1 6s	ziotl 85	1688 LS

Name \qquad
Question 1 (15 points):
HF K ${ }_{a}=7 \times 10^{-4}$
$\mathrm{CuF}_{2} \mathrm{~K}_{\text {sp }}=7 \times 10^{-2}$
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \mathrm{K}_{\mathrm{F}}=2 \times 10^{13}$
Rank the solubility of $\mathrm{CuF}_{2}(s)$ from highest to lowest in water, $0.1 \mathrm{M} \mathrm{HF}, 0.1 \mathrm{M} \mathrm{NH}_{3}$. Concisely explain your answer, showing the reactions involved in each case. (15 points)

Question 2 (25 points):

Ethylenediamene (shown below) is a chelate that is typically abbreviated as "en"

The formation constants, K_{F}, of octahedral Ni^{2+} complex ions at $25^{\circ} \mathrm{C}$ are:
$\left[\mathrm{Ni}(e n)_{3}\right]^{2+} \quad 2 \times 10^{18}$
$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \quad 4 \times 10^{8}$
a) Write the reactions for the formation and the formation constants (in terms of concentrations) for each complex ion (10 points)
b) The $\Delta \mathrm{H}_{\mathrm{f}}$ of the two complex ions are the same to two significant figures. How do you explain the difference in formation constants? (5 points)
c) If NH_{3} were added to an aqueous solution of $\left[\mathrm{Ni}(e n)_{3}\right]^{2+}$ such that both concentrations were initially 1 M after mixing, what would happen?
Write the reaction and discuss on which side the equilibrium would lie, and why.
(5 points)
d) If ethylenediamine were added to an aqueous solution of $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ such that both concentrations were initially 1 M after mixing, what would happen?
Again, write the reaction and discuss on which side the equilibrium would lie, and why. (5 points)

Question 3 (20 points):

The monomer styrene (shown below)

is used to make polystyrene (styrofoam).
a) What is the structure of the polymer? You may answer by showing the repeat unit. (10 points)
b) Show how this polymerization reaction proceeds, showing both the reactants and the products as the polymer grows. Explain concisely why this reaction proceeds over other possible reactions. (10 points)

Question 4 (30 points):

a) Choose three elements from a row of the periodic table and give the order you expect for increasing oxidation half-cell potential of the neutral element. Concisely explain your answer. (5 points)
b) Choose two of the above and write one as a balanced oxidation half-cell reaction and the other as a balanced reduction half-cell reaction. Use realistic oxidation states. Combine the two such that the overall reaction is spontaneous as written. (10 points)
c) Give the signs of $\Delta \mathrm{G}^{\circ}$ and E° that you expect for the reaction as written in b . What can you say about $\mathrm{K}_{\text {eq }}$? (10 points)
d) Choose three elements from a column of the periodic table and give the order you expect for increasing oxidation half-cell potential of the neutral element. Concisely explain your answer. (5 points)

Question 5 (10 points):

DNA has special properties as both a polymer and the holder of our genetic code: it can be synthesized precisely, copied, and measured (sequenced).
One property of a polymer (that we discussed) is rigidity.
A quantitative measure of this rigidity is the "persistence length" - below the persistence length, the polymer behaves as a rigid rod; at larger scales, it behaves as a flexible chain.

The persistence length of double-stranded, double-helix DNA is 50 nm .
The persistence length of single-stranded DNA is $\sim 4 \mathrm{~nm}$ (even lower at high salt concentration, by the way).
a) Concisely explain this difference between single- and double-stranded DNA. (5 points)
b) What interactions make double-stranded DNA more rigid? (5 points)

Extra credit \#1 (5 points):

In questions 2 c and 2 d , what would happen to the equilibria if the temperature were raised from $25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$? Explain your answers.

Extra credit \#2 (5 points)

In question 5 , how might double-stranded DNA be rigidified further (chemically)?

Name \qquad Section \# \qquad Student ID \# \qquad

Signature \qquad
TOTAL = \qquad
Chemistry 20B, Winter 2016, Sections 1 \& 3, Final Exam Saturday 12 March 2016
5 questions $+>1$ extra credit problem, 12 pages.
1)

Answer on these sheets only. Additional space on last page.
If you need extra sheets, please ask your proctor or TA.
2)
3)

Note: Only these papers can be used; no other notes are allowed.
4)

Please answer each question concisely. Show your calculations.
5)

You may (and in some cases, must) draw explanatory diagrams. Label all axes and features on graphs and diagrams.

EC)
You may not use a calculator, computer, watch, smart device, or electronics of any sort. Irrelevant and/or incorrect material will result in loss of points.

Table of constants and conversions
Speed of light: $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Electron charge magnitude: $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
Plank's constant: $\hbar=1.1 \times 10^{-34} \mathrm{~J}$-s
Gas constant: $\mathrm{R}=0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}=8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=1.987 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$
Boltzmann constant: $k_{\mathrm{B}}=1.4 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Electron rest mass: $\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}$
Proton rest mass: $\mathrm{M}=1.7 \times 10^{-27} \mathrm{~kg}$
1 mole $=6.02 \times 10^{23}$
Faraday constant $=96500 \mathrm{coul} / \mathrm{mole}$

Energy Conversion Table							
	eV	cm^{-1}	kca/mol	kJ/mol	K	J	Hz
eV	1	8065.73	23.0609	96.4869	11604.9	1.60210×10^{-19}	$2.41804 \times 10^{+14}$
cm^{-1}	1.23981×10^{-4}	1	0.00285911	0.0119627	1.42879	1.98630×10^{-23}	$2.99793 \times 10^{+10}$
kcal/mol	0.0433634	349.757	1	4.18400	503.228	6.95×10^{-21}	$1.04854 \times 10^{+13}$
kJ/mol	0.01036410	83.593	0.239001	1	120.274	1.66×10^{-21}	$2.50607 \times 10^{+12}$
K	0.0000861705	0.695028	0.001987 17	0.00831435	1	1.38054×10^{-23}	$2.08364 \times 10^{+10}$
J	$6.24181 \times 10^{+18}$	$5.03445 \times 10^{+22}$	$1.44 \times 10^{+20}$	$6.02 \times 10^{+20}$	$7.24354 \times 10^{+22}$	1	$1.50930 \times 10^{+33}$
Hz	4.13558×10^{-15}	3.33565×10^{-11}	9.53702×10^{-14}		4.79930×10^{-11}	6.62561×10^{-34}	

$\Delta \mathrm{G}^{\circ}=-n \mathrm{FE}^{\circ}=-2.303 \mathrm{RT} \log _{10} \mathrm{~K}_{\mathrm{eq}}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log _{10}\left([\mathrm{HA}] /\left[\mathrm{A}^{-}\right]\right)$
You will find a periodic table for your reference on the next page.

Question 1 (15 points):

Can an infrared photon break a typical covalent bond? Why or why not? (15 points)

Question 2 (25 points):

For the reaction of $\mathrm{Si}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SiO}_{2}(\mathrm{~s})$
a) What are the signs of $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$? Explain each of your answers concisely. (15 points)
[Hint: what would C do, in place of Si ?]
b) Petrified wood comes from dehydration (loss of water) of silicic acid, $\mathrm{Si}(\mathrm{OH})_{4}$ (shown below), ultimately to form quartz, SiO_{2} (after the silicic acid has replaced the organic matter in the plant; the colors from metal ions that are left in the quartz crystals). Show the first step in the polymerization reaction, starting with the reaction of two silicic acid molecules, including showing the reaction products. (10 points)

Question 3 (10 points):

Recall from the third midterm that the monomer styrene (left) is used to make polystyrene (middle), the main component of Styrofoam.
Last Wednesday, at the International Conference on Nanostructures on Kish Island, Iran, in the talk before mine, Prof. Luis Liz-Marzán (right, one of the world’s leading nanoscientists, the director of the nanocenter CIC biomaGUNE, San Sebastian, Spain, who has been knighted by the King of Spain) showed that he could make crystalline lattices of Au nanoparticles that were coated with polystyrene.

In each of the three electron microscope images below, all the $18-\mathrm{nm}$ Au nanoparticles (which appear as spots) are the same, other than their polystyrene coating. Each polystyrene chain is chemically attached to the $18-\mathrm{nm}$ Au nanoparticle at one end, so each particle has the same number of attached chains. The only difference from top to bottom in the images is the molecular weight (MW) of the polymer chains: 5800, 21,500 and $53,000 \mathrm{amu}$. Each spot in the electron microscopy image is an $18-\mathrm{nm} \mathrm{Au}$
nanoparticle within a small crystal of nanoparticles; the polymer surrounding each nanoparticle is not observed (because C and H do not interact with electrons as strongly as Au does).

a) Why are the Au nanoparticle spacings different and in this order, in terms of the attached polymer molecular weight? (Ignore the points in the plot for the different sizes of nanoparticles.) (5 points)
b) Estimate the average polymer chain lengths in each case in terms of number of monomer units. Recall that each carbon has four bonds and the H atoms are not shown in the molecular structures above. Show your work. (5 points)

Question 4 (20 points, extra points are possible):

Fluorescence is a widely used quantitative method of detection.
For example, in flow cytometry, two different dyes can be used and separately interrogated to label DNA in terms of the total amount of C-G vs A-T content in individual chromosomes. This is shown schematically below.

a) Explain concisely how we can tell the two dyes apart. (10 points, + bonus points if you correctly draw, use, and explain energy level diagrams for both ©o)
b) Explain concisely how we can tell how much of each type of base pair (C-G and A-T) and dye is present. (5 points)
c) If a piece of a chromosome is missing, what happens to the two signals? (5 points)

Question 5 (30 points):

The half-life of ${ }^{14} \mathrm{C}$ is approximately 5700 years.
The ratio of ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ in the atmosphere is approximately 1.2×10^{-12}.
If a tree was seeded and started to grow $17,100(=3 \times 5700)$ years ago and lived for 5700 years (ok, I know that is a long life for a tree, but nobody was carving their initials in it):
a) Draw and concisely explain a plot of the ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ ratio in the tree for the last 17,100 years. (15 points)
b) For the first 5700 years since the tree was seeded and started to grow and for the time since, give the functional form of the plot. (5 points)
c) What is the reaction order in $\left[{ }^{14} \mathrm{C}\right]$ for the 11,400 years since the tree died? Explain concisely. (5 points)
d) What is the ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ ratio in the (dead) tree now? Show your calculation. (5 points)

Extra credit \#1 (10 points):

For question 2a, write balanced half-cell redox reactions that could be used to measure the $\mathrm{E}_{\text {cell }}$ and $\Delta \mathrm{G}$ for this reaction. Label the oxidation and reduction half-cell reactions.

Name \qquad Section \# \qquad Student ID \# \qquad

Signature \qquad TOTAL $=$ \qquad
Chemistry 20B, Winter 2017, Sections 2 \& 3, Midterm \#1
1)

7 February 2017
5 questions +2 small extra credit problems, 10 pages.
2)

Answer on these sheets only. Additional space on last page.
If you need extra sheets, please ask your proctor or TA.
Note: Only these papers can be used; no other notes are allowed.
4)

Please answer each question concisely. Show your calculations. 5)
You may (and in some cases, must) draw explanatory diagrams.
Label all axes and features on graphs and diagrams.
EC1+2)
You may not use a calculator, computer, watch, smart device, or electronics of any sort. Irrelevant and/or incorrect material will result in loss of points.

Table of constants and conversions
Speed of light: $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Faraday constant $=96500 \mathrm{coul} / \mathrm{mole}$
Electron charge magnitude: $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
Plank's constant: $\hbar=1.1 \times 10^{-34} \mathrm{~J}$-s
Gas constant: $\mathrm{R}=0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}=8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=1.987 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$
Boltzmann constant: $k_{\mathrm{B}}=1.4 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Electron rest mass: $\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}$
Proton rest mass: $\mathrm{M}=1.7 \times 10^{-27} \mathrm{~kg}$
1 mole $=6.02 \times 10^{23}$

Energy Conversion Table							
	eV	cm^{-1}	kcal/mol	kJ/mol	K	J	Hz
eV	1	8065.73	23.0609	96.4869	11604.9	1.60210×10^{-19}	$2.41804 \times 10^{+14}$
cm^{-1}	1.23981×10^{-4}	1	0.00285911	0.0119627	1.42879	1.98630×10^{-23}	$2.99793 \times 10^{+10}$
$\mathrm{kcal} / \mathrm{mol}$	0.0433634	349.757	1	4.18400	503.228	6.95×10^{-21}	$1.04854 \times 10^{+13}$
kJ/mol	0.01036410	83.593	0.239001	1	120.274	1.66×10^{-21}	$2.50607 \times 10^{+12}$
K	0.0000861705	0.695028	0.00198717	0.00831435	1	1.38054×10^{-23}	$2.08364 \times 10^{+10}$
J	$6.24181 \times 10^{+18}$	$5.03445 \times 10^{+22}$	$1.44 \times 10^{+20}$	$6.02 \times 10^{+20}$	$7.24354 \times 10^{+22}$	1	$1.50930 \times 10^{+33}$
Hz	4.13558×10^{-15}	3.33565×10^{-11}	9.53702×10^{-14}		4.79930×10^{-11}	6.62561×10^{-34}	1

$\Delta \mathrm{G}^{\circ}=-n \mathrm{FE}^{\circ}=-2.303 \mathrm{RT} \log _{10} \mathrm{~K}_{\mathrm{eq}}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log _{10}\left([\mathrm{HA}] /\left[\mathrm{A}^{-}\right]\right)$
You will find a periodic table for your reference on the next page.

Name \qquad Section \# \qquad Student ID \# \qquad

For questions 1 and 2, refer to this figure, which is the interaction potential energy level diagram for Ar-Ar. Explain your answers concisely.

Question 1 (15 points):
a) What is the approximate bond energy for Ar_{2} in cm^{-1} and in your favorite energy units (which must be one of the following: $\mathrm{eV}, \mathrm{kcal} / \mathrm{mol}, \mathrm{kJ} / \mathrm{mol}$, or J)? (10 points)
b) What is the approximate bond length of Ar_{2} ? (5 points)

Question 2 (25 points):

Explain each of your answers concisely.
Referring again to the figure above for questions 2 a and 2 b :
a) For the reaction:

$$
\operatorname{Ar}_{2}(g) \leftrightarrow 2 \operatorname{Ar}(g)
$$

What are the signs of $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$ at room temperature and (concisely) why?
In what form is most of the argon at 1 atm pressure (pure argon) at room temperature -
Ar or Ar_{2} ? (10 points)
b) What is the value of $\Delta \mathrm{H}$ for this reaction? (5 points)
c) For the reaction:

$$
\mathrm{N}_{2}(g) \leftrightarrow 2 \mathrm{~N}(g)
$$

What are the signs of $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$ at room temperature and (concisely) why? (10 points) In what form is most of the nitrogen at 1 atm pressure (pure nitrogen) at room temperature N or N_{2} ?

Question 3 (20 points):

a) Rank these (eight different) solutions by pH , indicating which are the high and low ends, and concisely explain your reasoning.
(Your reasoning, which should be based on interactions with water, is worth more than the correct order.)
$1 \mathrm{M} \mathrm{FeCl}_{2}, 1 \mathrm{M} \mathrm{FeCl}_{3}, 1 \mathrm{M} \mathrm{HClO}_{3}, 1 \mathrm{M} \mathrm{HClO}_{4}, 0.1 \mathrm{M} \mathrm{NaCl}^{2}, 1 \mathrm{M} \mathrm{NaCl}, 0.1 \mathrm{M} \mathrm{NH}_{3}, 1 \mathrm{M} \mathrm{NH}_{3}$

Question 4 (25 points):

Prof. Bruce Dunn in the UCLA Materials Science \& Engineering Department is working on a zinc-air battery based on the following half-cell reactions:
$\mathrm{Zn}(\mathrm{OH})_{4}{ }^{2-}+2 \mathrm{e}^{-} \leftrightarrow \mathrm{Zn}+4 \mathrm{OH}^{-} \quad \mathrm{E}^{\circ}=-1.23 \mathrm{~V}$
$\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \leftrightarrow 4 \mathrm{OH}^{-} \quad \mathrm{E}^{\circ}=0.34 \mathrm{~V}$
Zinc-air batteries have high energy densities in part because one of the reactants is air, and thus does not add to the weight of the cell.
a) What is the overall cell reaction for the zinc-air battery when it is being used to produce power (discharged)? Indicate which is the reduction half-reaction and which is the oxidation half-cell reaction. (10 points)
b) What is the overall standard cell potential of the reaction you wrote in (a)? (5 points)
c) What is the n (number of electrons) for the overall cell reaction you wrote in (a)?
(4 points)
d) Which elements of which compounds are being oxidized and which are being reduced in the overall cell reaction you wrote in (a)? Determine the oxidation states of all the species in the reaction. (6 points)

Question 5 (15 points):

The sublimation point of dry ice, $\mathrm{CO}_{2}(\mathrm{~s})$, is $-78^{\circ} \mathrm{C}$.
$\mathrm{CO}_{2}(\mathrm{~s}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})$
The absolute value of enthalpy of sublimation, $|\Delta \mathrm{H}| \sim 20 \mathrm{~kJ} / \mathrm{mol}$.
a) What are the signs of $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$ for CO_{2} sublimation at $-78{ }^{\circ} \mathrm{C}$? (10 points)
b) What intramolecular and/or intermolecular interactions are relevant to sublimation and why? (3 points)
c) Estimate $\Delta \mathrm{S}$ for this reaction (in $\mathrm{kJ} / \mathrm{mol}-\mathrm{K}$). (2 points)

Extra credit \#1 (2 points):

Which do you expect to have a stronger bond, Ar_{2} or $\mathrm{Ar}_{2}{ }^{+}$, and why?

Extra credit \#2 (2 points):

Estimate by what factor the N_{2} bond strength is larger than the Ar_{2} bond strength and concisely give your reasoning.

Name \qquad Section \# \qquad Student ID \# \qquad

Signature \qquad
Chemistry 20B, Winter 2017, Sections 2 \& 3, Midterm \#2
TOTAL $=$ \qquad
2 March 2017
5 questions +2 small extra credit problems, 8 pages.
1)

Answer on these sheets only. Additional space on last page.
If you need extra sheets, please ask your proctor or TA.
2)

If you continue a problem on an additional page, please indicate that on the original problem page.
Note: Only these papers can be used; no other notes are allowed.
Please answer each question concisely. Show your calculations.
You may (and in some cases, must) draw explanatory diagrams. Label all axes and features on graphs and diagrams.

You may not use a calculator, computer, watch, smart device, or electronics of any sort. Irrelevant and/or incorrect material will result in loss of points.
\rightarrow Only exam answers in pen will be considered for regrading.
Table of constants and conversions
Speed of light: $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Faraday constant $=96500 \mathrm{coul} / \mathrm{mole}$
Electron charge magnitude: $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
Plank's constant: $\hbar=1.1 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
Gas constant: $\mathrm{R}=0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}=8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=1.987 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$
Boltzmann constant: $k_{\mathrm{B}}=1.4 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Electron rest mass: $\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}$
Proton rest mass: $\mathrm{M}=1.7 \times 10^{-27} \mathrm{~kg}$
1 mole $=6.02 \times 10^{23}$

Energy Conversion Table							
-	eV	cm^{-1}	kcal/mol	kJ/mol	K	J	Hz
eV	1	8065.73	23.0609	96.4869	11604.9	1.60210×10^{-19}	$2.41804 \times 10^{+14}$
cm^{-1}	1.23981×10^{-4}	1	0.00285911	0.0119627	1.42879	1.98630×10^{-23}	$2.99793 \times 10^{+10}$
kcal/mol	0.0433634	349.757	1	4.18400	503.228	6.95×10^{-21}	$1.04854 \times 10^{+13}$
kJ/mol	0.01036410	83.593	0.239001	1	120.274	1.66×10^{-21}	$2.50607 \times 10^{+12}$
K	0.0000861705	0.695028	0.00198717	0.00831435	1	1.38054×10^{-23}	$2.08364 \times 10^{+10}$
J	$6.24181 \times 10^{+18}$	$5.03445 \times 10^{+22}$	$1.44 \times 10^{+20}$	$6.02 \times 10^{+20}$	$7.24354 \times 10^{+22}$	1	$1.50930 \times 10^{+33}$
Hz	4.13558×10^{-15}	3.33565×10^{-11}	9.53702×10^{-14}		4.79930×10^{-11}	6.62561×10^{-34}	1

$\Delta \mathrm{G}^{\circ}=-n \mathrm{FE}^{\circ}=-2.303 \mathrm{RT} \log _{10} \mathrm{~K}_{\mathrm{eq}}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log _{10}\left([\mathrm{HA}] /\left[\mathrm{A}^{-}\right]\right)$
You will find a periodic table for your reference on the next page.

Name \qquad Section \# \qquad Student ID \# \qquad
Question 1 (10 points):
a) Which of the following photons have sufficient energy to break typical covalent chemical bonds? (8 points)
X-rays, microwaves, visible, infrared
b) With what molecular transitions are the photons you selected in (a)? (2 points)

Question 2 (20 points):

Silicon can be reacted to form SiO_{2} (an insulator) or metal silicides such as $\mathrm{Ni}_{2} \mathrm{Si}$ that are metallic.
Draw and concisely compare simple energy level (band) diagrams for $\mathrm{Si}, \mathrm{SiO}_{2}$, and $\mathrm{Ni}_{2} \mathrm{Si}$.
(It may be helpful to draw the three diagrams on one line.)
Indicate where bands are filled and where they are empty.
Indicate the Fermi energy on each diagram.
Label your axes.
You do not need to include dopants in any of the above, just the pure material (which is call "intrinsic").

Question 3 (25 points):

For the transition metal complex $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$:
a) Identify the Lewis acid(s) and Lewis base(s). (5 points)
b) Write the formation reaction from the (aqueous) metal ion and the ligands. Give the formation (equilibrium) constant (in terms of concentrations). (5 points)
c) Give the signs of $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$ for the reaction that you wrote above. Indicate what you expect for the formation constant (i.e., is it greater or less than some number?) Is the reaction spontaneous? (Please be sure your answers are consistent!) (10 points)
d) Do you expect the reduction half-cell potential of the metal ion or that of the complex to be larger (reduction to the solid metal)? Explain your answer concisely. (5 points)

Question 4 (25 points):

For phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, the $\mathrm{pK}_{\mathrm{a}} \mathrm{S}$ are:
$\mathrm{pK}_{\mathrm{a} 1}=2.2$
$\mathrm{pK}_{\mathrm{a} 2}=7.2$
$\mathrm{pK}_{\mathrm{a} 3}=12.7$
a) Write the reaction associated with $\mathrm{K}_{\mathrm{a} 2}$. (10 points)
b) Write $\mathrm{K}_{\mathrm{a} 2}$ in terms of concentrations of the reactants and products in the reaction above? (5 points)
c) To make a buffer that is close to neutral pH , how would you use some of the following. Be precise in terms of what you would use and how much of each. (10 points)
(You do not have to use all of these chemicals. Assume that you have glassware to measure volumes and scales to measure weights.)
$0.001 \mathrm{M} \mathrm{HCl}, 1 \mathrm{M} \mathrm{HCl}, 10 \mathrm{M} \mathrm{HCl}$
$0.001 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}, 1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
$0.001 \mathrm{M} \mathrm{NH}_{3}, 1 \mathrm{M} \mathrm{NH}_{3}$
Water
Solids: $\mathrm{Fe}, \mathrm{Na}, \mathrm{NaCl}, \mathrm{NaH}, \mathrm{NaOH}$

Question 5 (20 points):

For $\mathrm{Cu}(\mathrm{OH})_{2}, \mathrm{~K}_{\mathrm{sp}}=2.2 \times 10^{-20}$
Also, for $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}, \mathrm{K}_{\mathrm{F}}=5 \times 10^{12}$
a) Write the equilibrium expression for K_{sp} in terms of concentrations (5 points)
b) Rank the order from highest to lowest in which $\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$ will dissolve and concisely explain your answers. (15 points)
Water, $1 \mathrm{M} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, 1 \mathrm{M} \mathrm{NaOH}, 1 \mathrm{M} \mathrm{NH}_{3}$

Extra credit \#1 (2 points):

ZnO is a colorless semiconductor that is used in sunscreen.
What can you say about its bandgap?

Extra credit \#2 (2 points):

What combinations of the chemicals in 4 c could you use to start a fire and how would each combination you name react?

